วันพุธที่ 19 กันยายน พ.ศ. 2561

1.3 การปริมาณสาร

ปริมาณสารสัมพันธ์

ปริมาณสารสัมพันธ คือ ความสัมพันธ์ระหว่างมวลหรือน้ำหนักของธาตุต่าง ๆ ของสารประกอบในปฏิกิริยาเคมี ปริมาณสารสัมพันธ์มีประโยชน์ในแง่ของการคาดคะเนปริมาณของสารที่ต้องใช้เป็นสารตั้งต้นเพื่อให้เกิดผลิตภัณฑ์ที่ต้องการ

ระบบเปิดระบบปิด
ระบบ ( System) หมายถึง สิ่งซึ่งอยู่ในขอบเขตที่ศึกษา
ระบบเปิด (Open System) หมายถึง ระบบที่มีการถ่ายเทมวลของสารระหว่างระบบกับสิ่งแวดล้อมหรือระบบ ซึ่งมวลและพลังงานของสารก่อนการเปลี่ยนแปลงและหลังการเปลี่ยนแปลงมีค่าไม่คงที่ เช่น
ระบบปิด ( Closed System) หมายถึงระบบที่ไม่มีการถ่ายเทมวลสารกับสิ่งแวดล้อมหรือระบบ ซึ่งมวลของสารก่อนการเปลี่ยนแปลง และหลังการเปลี่ยนแปลงคงที่ แต่พลังงานของสารก่อนการเปลี่ยนแปลงและหลังการเปลี่ยนแปลงไม่คงที่ เช่น
กฎต่าง ๆ ที่เกี่ยวข้องกับการเปลี่ยนแปลง
1. กฎทรงมวล
อองตวน โลรอง ลาวัวซิเอ ได้ตั้งกฎทรงมวลซึ่งสรุปได้ว่า “มวลของสารทั้งหมดก่อนทำปฏิกิริยาย่อมเท่ากับมวลของสารทั้งหมดหลังทำปฏิกิริยา” กฎนี้จะใช้ได้กับปฏิกิริยาเคมีในระบบปิด ใช้ไม่ได้กับปฏิกิริยาเคมีนิวเคลียร์ เช่น เทียนไขในภาชนะปิดใบหนึ่ง มวลของสารทั้งหมดก่อนทำปฏิกิริยาเท่ากับมวลของเทียนไขกับภาชนะ เมื่อจุดเทียนไขในภาชนะปิดนี้ แล้วทำการชั่งมวลใหม่ มวลจะเท่าเดิม (ระบบปิด)
2. กฎสัดส่วนคงที่
โจเซฟ เพราสต์ ได้ตั้งกฎสัดส่วนคงที่ซึ่งสรุปได้ว่า “ในสารประกอบหนึ่ง ๆ ธาตุต่าง ๆ ที่เป็นองค์ประกอบรวมตัวกันด้วยอัตราส่วนโดยน้ำหนักที่คงที่เสมอ” โดยไม่คำนึงถึงว่าสารประกอบนั้นจะมีกำเนิดหรือเตรียมได้โดยวิธีใด

มวลอะตอม
อะตอมเป็นอนุภาคที่เล็กที่สุดของธาตุที่สามารถทำปฏิกิริยาเคมีได้ มีรัศมีของอะตอมยาวประมาณ 10 -10 เมตร อะตอมที่เบาที่สุดมีมวลประมาณ 1.6 x 10 -24 กรัม อะตอมที่หนักที่สุดมีมวลประมาณ 250 เท่า ซึ่งมีค่าน้อยมาก (เป็นผลคูณของ 10 -24) มวลอะตอมเหล่านี้จะต้องรวมกันต่อไปเป็นมวลโมเลกุล ซึ่งทำให้ยุ่งยากในการคำนวณ จึงนิยมใช้มวลเปรียบเทียบที่เรียกว่า มวลอะตอมหรือน้ำหนักอะตอม
มวลของอะตอมนั้นก็คือ มวลขององค์ประกอบทั้งหมดในอะตอมรวมกัน อันได้แก่ โปรตอน นิวตรอน และอิเล็กตรอน ซึ่งมวลของโปรตอน และนิวตรอนนั้นใกล้เคียงกันมาก แต่ไม่เท่ากัน และสูงกว่าอิเล็กตรอน นับพันเท่า
อนุภาค
มวล ( กรัม)
โปรตอน
1.6726 x 10 -24
นิวตรอน
1.6749 x 10 -24
อิเล็กตรอน
9.1096 x 10 -28
มวลอะตอม คือ มวลเปรียบเทียบที่บอกให้ทราบว่ามวลของธาตุ 1 อะตอมหนักเป็นกี่เท่าของมวลของธาตุมาตรฐาน 1 อะตอม
มวลของธาตุ 1 อะตอม คือ มวลที่แท้จริงของอะตอมนั้นๆ 1 อะตอม
มวลของธาตุมาตรฐาน 1 อะตอม คือ มวลของธาตุที่ถูกใช้เป็นตัวเปรียบเทียบ ซึ่งทุกอะตอมต้องมีค่าเท่ากันหมด จึงเรียกว่ามวลมาตรฐาน มีค่าเท่ากับ 1.66 x 10 -24 กรัม หรือ 1 amu (atomic mass unit)
ถ้ามวลอะตอมของ C = 12 จากสูตรการหามวลอะตอมของธาตุ มวลของธาตุ C 1 อะตอม = 12 x 1.66 x 10 -24 กรัม ถ้าใช้มวลของธาตุ C 1 อะตอมเป็นค่ามาตรฐานจะได้สูตร
นอกจากนี้มวลอะตอมยังคำนวณได้จากมวลเฉลี่ยของบรรดาไอโซโทปที่มีในธรรมชาติ
ลักษณะสำคัญของมวลอะตอม มีดังนี้
1. มวลอะตอมของธาตุไม่มีหน่วย
2. มวลอะตอมเป็นค่าเปรียบเทียบ ส่วนมวลของธาตุ 1 อะตอมเป็นมวลที่แท้จริง มีหน่วยเป็นกรัม
3. มวลของธาตุมาตรฐาน 1 อะตอม ที่ใช้เป็นตัวถูกเปรียบเทียบของมวลอะตอมมีค่าเท่ากันหมดในทุก ๆ ธาตุ
4. คำนวณได้จากสูตรเมื่อทราบมวลของธาตุนั้น 1 อะตอม และคำนวณได้จากไอโซโทปของธาตุนั้น ๆ
 มวลโมเลกุล
เนื่องจากโมเลกุลมีขนาดเล็กมากเช่นเดียวกับอะตอม ดังนั้น มวลของโมเลกุลจึงนิยมบอกเป็นค่าเปรียบเทียบเช่นกัน
ลักษณะสำคัญของมวลโมเลกุล
1. มวลโมเลกุลไม่มีหน่วย เพราะเป็นค่าเปรียบเทียบกับค่ามาตรฐาน
2. มวลของสาร 1 โมเลกุล คือมวลที่แท้จริงของโมเลกุลนั้น ๆ 1 โมเลกุล
3. มวลโมเลกุลคำนวณได้จากมวลอะตอมรวมกัน เพราะโมเลกุลเกิดจากอะตอมรวมกัน หรือได้จากมวลของสาร 1 โมเลกุล เปรียบเทียบค่ามาตรฐาน
4. มวลมาตรฐานที่ถูกเปรียบเทียบต้องมีค่าเท่ากันหมดในทุก ๆ โมเลกุล
การคำนวณมวลโมเลกุลของสาร
ตัวอย่าง จงหามวลโมเลกุลของ CaSO 4 . 2H 2O กำหนดมวลอะตอมของ Ca = 40, S = 32, O = 16 และ H = 1
วิธีทำ มวลโมเลกุลของ CaSO 4 . 2H 2O = มวลอะตอมของทุกธาตุใน CaSO 4 . 2H 2O รวมกัน
= 40+32+(16 x 4)+2(2)+2(16)
= 40+32+64+4+32 = 172
ดังนั้น มวลโมเลกุลของ CaSO 4 . 2H 2O =172 ตอบ
โมล
โมล คือ หน่วยของปริมาณสารหน่วยหนึ่งที่มีความหมายเช่นเดียวกับกรัมโมเลกุล กรัมอะตอมหรือกรัมไอออน มีวิธีหาได้ 4 แบบ ดังต่อไปนี้
1. จำนวนอนุภาคต่อโมลของสาร
CH 4(g) + O 2(g) ---------> H 2O(g) + CO 2(g) …………..(1)
C 3H 8(g) + O 2(g) ----------> H 2O(g) + CO 2(g) …………..(2)
วิธีทำ จากสมการ (1) ดุลสมการได้ดังนี้
CH 4(g) + 2O 2(g)  2H 2O( ) + CO 2(g)
1 ..............2.................... 2............. 1 mol กฎอาโวกาโดร
1 ..............2 ....................2 .............1 mol และกฎเกย์- ลูสแซก
CH 4 1 cm 3 ทำปฏิกิริยาพอดีกับก๊าซออกซิเจน = 2 cm 3
CH 4 15 cm 3 ทำปฏิกิริยาพอดีกับก๊าซออกซิเจน = 15 x 2 = 30 cm 3
จาก (2) ;
C 3H 8(g) + 5O 2(g)  4H 2O(g) + 3CO 2(g)
1 ..................5 ....................4 ..............3 mol
1 ..................5 ....................4 ..............3 cm 3
C 3H 8 1 cm 3 ทำปฏิกิริยาพอดีกับก๊าซออกซิเจน = 5 cm 3
C 3H 8 15 cm 3 ทำปฏิกิริยาพอดีกับก๊าซออกซิเจน = 15 x 5 = 75 cm 3
ต้องใช้ก๊าซออกซิเจนทั้งหมด = 30 = 75 = 105 cm 3 ตอบ

การหาสูตรเอมพิริคัลของสาร
สูตรเอมพิริคัล เป็นสูตรที่แสดงอัตราส่วนอย่างต่ำของธาตุองค์ประกอบ เช่น ไฮโดรเจนเปอร์ออกไซด์มีสูตรโมเลกุลเป็น H 2O 2 อัตราส่วนอย่างต่ำของจำนวนอะตอม H : O เท่ากับ 1 : 1 สูตรเอมพิริคัลจึงเป็น HO กลูโคสมีสูตรโมเลกุลเป็น C 6H 12O 6 อัตราส่วนอย่างต่ำของจำนวนอะตอม C : H : O เท่ากับ 1 : 2 : 1 สูตรเอมพิริคัลจึงเป็น CH 2O

การหาสูตรเอมพิริคัล มีหลักดังนี้
1. ต้องทราบว่าสารที่จะหาสูตรเอมพิริคัลประกอบด้วยธาตุใดบ้าง
2. ต้องทราบมวลอะตอมของแต่ละธาตุในสารที่จะหาสูตรเอาพิริคัล
3. ต้องทราบมวลของแต่ละธาตุในสารที่จะหาสูตร
4. ให้ข้อมูลจากข้อ 1, 2 และ 3 หาอัตราส่วนโดยโมล ด้วยการนำมวลของแต่ละธาตุหารด้วยมวลอะตอมของมันมาเข้าอัตราส่วน
5. สำหรับการปัดจุดทศนิยมของตัวเลขในการหาอัตราส่วนโดยโมล โดยทำตัวเลขใดตัวเลขหนึ่ง ให้เป็น 1 แล้วจึงปัดจุดทศนิยมด้วยวิธีปัด 0.1 - 0.2 ทิ้ง ถ้าเป็น 0.8 - 0.9 ปัดขึ้นอีก 1 ถ้าเป็น 0.0 - 0.7 ปัดไม่ได้ต้องหาตัวเลขที่ต่ำที่สุดมาคูณตัวเลขของอัตราส่วนโดยโมลให้มีค่าใกล้กับที่ จะปัดจุดทศนิยมได้ แล้วปัดจุดทศนิยมตัวเลขให้เป็นจำนวนเต็ม อนึ่งการปัดจุดทศนิยม ถ้าตัวเลขปัดจุดทศนิยมไม่ได้ ตัวเลขทุกตัวของอัตราส่วนโดยโมลนั้นก็จะไม่ปัดจุดทศนิยม หาตัวเลขมาคูณให้ได้ตัวเลขที่จะปัดจุดทศนิยมได้อัตราส่วนโดยโมลที่เป็นจำนวนเต็มได้สูตรเอมพิริคัล

สารกำหนดปริมาณและร้อยละของผลได้ของสารผลิตภัณฑ์
สารกำหนดปริมาณ ( Limiting Reagent)
สารที่เข้าทำปฏิกิริยามีปริมาณไม่พอดีกัน ปฏิกิริยาที่เกิดขึ้นจะสิ้นสุดเมื่อสารใดสารหนึ่งหมด สาร ที่หมดก่อนจะเป็นตัวกำหนดปริมาณของผลิตภัณฑ์ของสารผลิตภัณฑ์ที่เกิดขึ้นเรียกว่า สารกำหนดปริมาณ ( Limiting Reagent)
สารกำหนดปริมาณในการเกิดปฏิกิริยาเป็นการคำนวณสารจากสมการของปฏิกิริยาที่โจทย์บอกข้อมูลเกี่ยวกับสารตั้งต้นมาให้มากกว่าหนึ่งชนิด ลักษณะโจทย์มี 2 แบบ คือ
1. โจทย์บอกข้อมูลของสารตั้งต้นมาให้มากกว่าหนึ่งชนิด แต่ไม่บอกข้อมูลเกี่ยวกับสารผลิตภัณฑ์ ในการคำนวณต้องพิจารณา ว่าสารใดถูกใช้ทำปฏิกิริยาหมด แล้วจึงใช้สารนั้นเป็นหลักในการคำนวณสิ่งที่ต้องการจากสมการได้
2. โจทย์บอกข้อมูลของสารตั้งต้นมาให้มากกว่าหนึ่งชนิด และบอกข้อมูลของสารผลิตภัณฑ์ชนิด ใดชนิดหนึ่งมาให้ด้วย ในการคำนวณให้ใช้ข้อมูลจากสารผลิตภัณฑ์เป็นเกณฑ์ในการเทียบหาสิ่งที่ต้องการจากสมการเคมี

ร้อยละของผลได้ของสารผลิตภัณฑ์
ในการคำนวณหาปริมาณของผลิตภัณฑ์จากสมการเคมีนั้น ค่าที่ได้เรียกว่า ผลได้ตามทฤษฎี ( Theoretical yield) แต่ในทางปฏิบัติจะได้ผลิตภัณฑ์น้อยกว่าตามทฤษฎี แต่จะได้มากหรือน้อยแค่ไหน ก็ขึ้นอยู่กับวิธีการและสารเคมีที่ใช้ เรียกผลที่ได้ว่านี้ ผลได้จริง ( Actual yield) สำหรับการรายงานผล การทดลองนั้น จะเปรียบเทียบค่าที่ได้ตามทฤษฎีในรูปร้อยละ ซึ่งจะได้ความสัมพันธ์ดังนี้
ความเข้มข้นของสารละลายและการเตรียมสารละลาย
สารละลาย ( Solution) คือ สารเนื้อเดียวที่มีสารตั้งแต่ 2 ชนิดขึ้นไปมารวมกัน ประกอบด้วยตัวทำละลายและตัวถูกละลาย ถ้าตัวถูกสารละลายและตัวทำละลายมีสถานะเดียวกันสารละลายที่มีปริมาณมากกว่าเป็นตัวทำละลาย แต่ถ้าสารทั้งสองมีสถานะแตกต่างกันสารที่มีสถานะเดียวกันกับสารละลายเป็นตัวทำละลาย
หน่วยของสารละลาย เป็นค่าที่แสดงถึงปริมาณของตัวละลายที่ละลายอยู่ในตัวทำละลายหรือในสารละลายนั้น วัดในรูปความเข้มข้นปริมาณตัวถูกละลายต่อปริมาณสารละลาย ( ยกเว้นหน่วยโมลต่อกิโลกรัม)
1. ร้อยละ
1.1 ร้อยละโดยมวล ( มวล / มวล) คือ ปริมาณมวลของตัวถูกละลายในมวลของสารละลาย 100 หน่วยมวล
1.2 ร้อยละโดยปริมาตร ( ปริมาตร / ปริมาตร) คือ ปริมาตรของตัวถูกละลายในสารละลายปริมาตร 100 หน่วยปริมาตร นิยมใช้กับสารละลายที่เป็นของเหลว เช่น สารละลายแอลกอฮอล์เข้มข้นร้อยละ 20 โดยปริมาตร หมายความว่าสารละลายนี้ 100 ลูกบาศก์เซนติเมตรจะมีแอลกอฮอล์ละลายอยู่ 20 ลูกบาศก์เซนติเมตร
1.3 ร้อยละมวลต่อปริมาตร คือ ปริมาณของตัวถูกละลายในปริมาตรของสารละลาย 100 หน่วยปริมาตร โดยทั่วไปถ้ามวลของตัวถูกละลายมีหน่วยเป็นกรัม ปริมาตรของสารละลายจะมีหน่วยเป็นลูกบาศก์เซนติเมตร และถ้ามวลของตัวถูกละลายมีหน่วยเป็นกิโลกรัม ปริมาตรของสารละลายจะมีหน่วยเป็นลูกบาศก์เดซิเมตรหรือลิตร หน่วยมวลและหน่วยปริมาตรต้องให้สอดคล้องกันด้วย
2. โมลาริตี หรือโมลต่อลูกบาศก์เดซิเมตร ( mol/dm 3 หรือ mol/l) เป็นหน่วยที่บอกจำนวนโมลของตัว ถูกละลายในสารละลาย 1 ลูกบาศก์เดซิเมตร หน่วยความเข้มข้นเป็นโมลต่อลูกบาศก์เดซิเมตรอาจเรียกย่อได้เป็นโมลาร์ (Molar) ใช้สัญลักษณ์ M
3. โมแลลิตี หรือ โมลต่อกิโลกรัม (mol/kg) เป็นหน่วยที่บอกจำนวนโมลของตัวถูกละลายที่ละลาย ในตัวทำละลาย 1 กิโลกรัม จึงมีหน่วยเป็น mol/kg หรือเรียกว่า โมแลล ( Molal) ใช้สัญลักษณ์ m
4. เศษส่วนโมล ( Mole fractions) คือ สัดส่วนจำนวนโมลของสารองค์ประกอบหนึ่งต่อจำนวนโมลรวม ของสารทุกชนิดในสารละลาย ใช้สัญลักษณ์ X เช่น สารละลายชนิดหนึ่งประกอบด้วยสาร A a mol, B b mol และ C c mol จะได้เศษส่วนโมลของสาร A, B และ C ดังนี้
เศษส่วนโมลของสาร A (X A) = a / ( a + b + c )
เศษส่วนโมลของสาร B (X B) = b / ( a + b + c )
เศษส่วนโมลของสาร C (X C) = c / ( a + b + c )
ผลรวมของเศษส่วนโมลของสารองค์ประกอบทั้งหมดคือ XA + XB + XC มีค่าเท่ากับ 1 และเมื่อนำค่าเศษส่วนโมลของแต่ละสารมาคูณด้วยร้อย จะได้ความเข้มข้นในหน่วยร้อยละโดยมวลของสารนั้น
ร้อยละโดยมวลของสาร A = เศษส่วนโมลของสาร A * 100
ร้อยละโดยมวลของสาร B = เศษส่วนโมลของสาร B * 100
ร้อยละโดยมวลของสาร C = เศษส่วนโมลของสาร C * 100
5. ส่วนในล้านส่วน ( parts per million; ppm) เป็นหน่วยที่บอกมวลของตัวถูกละลายที่ละลายอยู่ในสารละลาย 1 ล้านหน่วยมวลเดียวกัน ซึ่งเป็นหน่วยความเข้มข้นของสารละลายที่เจือจางมาก ๆ หรืออาจใช้แสดงปริมาณของสิ่งเจือปนที่มีอยู่ในสารเคมีที่บริสุทธิ์ต่าง ๆ เช่น สารละลายโพแทสเซียมไนเตรตเข้มข้น 2 ppm หมายความว่ามีโพแทสเซียมไนเตรตเป็นตัวละลาย 2 ส่วน (กรัม) ละลายอยู่ในสารละลาย 1 ล้านส่วน ( กรัม) หรือ 106 กรัม
ในกรณีที่สารละลายเจือจางมากๆ มวลของสารละลายมีค่าน้อยมากเมื่อเทียบกับมวลของตัวทำละลาย ทำให้มวลของสารละลายมีค่าใกล้เคียงกันมากกับมวลของตัวทำละลายจนถือว่าเท่ากันได้
การเตรียมสารละลาย
การเตรียมสารละลายนั้นสามารถทำได้เป็น 2 วิธีใหญ่ คือ การเตรียมจากการละลายของสารบริสุทธิ์ และเตรียมจากสารละลายเดิม โดยทำให้เจือจางลง ซึ่งจะมีกรรมวิธีในการเตรียมที่แตกต่างกันไป แต่ถ้าเตรียมอย่างถูกต้องก็จะได้สารละลายที่มีความเข้มข้นตามต้องการได้เแม่นยำ นักเรียนคิดว่าการเตรียมสารละลายเตรียมได้จากสารบริสุทธิ์โดยตรง หรือเตรียมจากการเจือจางสารละลายเดิมที่มีอยู่สองวิธีนี้มีความแตกต่างกันอย่างไร
ในการคำนวณปริมาณสารที่ใช้เตรียมสารละลายนั้น สิ่งที่จำเป็นต้องทราบ คือปริมาณตัวละลายที่ต้องการ และปริมาณของสารละลายทั้งหมด
ตัวอย่าง ในกรณีนี้ ต้องการ โพแทสเซียมเปอร์แมงกาเนต (KMnO 4) เข้มข้น 0.005 โมลาร์ ปริมาตร 250 cm 3
ซึ่งความเข้มข้น 0.005 โมลาร์นั้น หมายความว่า สารละลาย 1,000 cm 3 จะมีโพแทสเซียมเปอร์แมงกาเนตอยู่ 0.005 โมล
ดังนั้นสารละลาย 250 cm 3 ก็จะมีโพแทสเซียมเปอร์แมงกาเนตอยู่ 0.005 x 250 = x โมล

โพแทสเซียมเปอร์แมงกาเนตมีมวลโมเลกุล = 158 แสดงว่า โพแทสเซียมเปอร์แมงกาเนต 1 โมล จะหนัก 158 กรัม
ต้องการ X โมล ต้องชั่งมา X กรัม

การเจือจางสารละลายนั้นต้องการโพแทสเซียมเปอร์แมงกาเนต 0.001 โมล ปริมาตร 100 cm 3
สารละลาย 0.001 โมล แสดงว่า สารละลาย 1,000 cm 3 มีโพแทสเซียมเปอร์แมงกาเนตละลายอยู่ 0.001 โมล
ในสารละลาย 100 cm 3 มีโพแทสเซียมเปอร์แมงกาเนตละลายอยู่ 100 x 0.001 / 1,000 = y โมล

สารละลาย 0.005 โมล ของโพแทสเซียมเปอร์แมงกาเนตแสดงว่า มีโพแทสเซียมเปอร์แมงกาเนต 0.005 โมล ใน สารละลาย 1,000 cm 3 ถ้าต้องการ y โมล ต้องใช้สารละลาย 1,000 y / 0.005 = ? cm 3
สมบัติคอลลิเกทีฟของสารละลาย
สารละลายเป็นสารเนื้อเดียวที่ได้จากการผสมสารบริสุทธ์ตั้งแต่ 2 ชนิดขึ้นไปเข้าด้วยกัน ถ้าสารที่นำมาผสมกันมีสถานะเดียวกันจะถือว่าสารที่มีปริมาณมากที่สุดเป็นตัวทำละลาย ส่วนสารที่มีปริมาณน้อยกว่าเป็นตัวละลาย จุดเดือดของสารละลายสูงกว่าตัวทำละลายบริสุทธิ์ และจุดหลอมเหลวของสารละลายต่ำกว่าตัวทำทำละลายบริสุทธิ์ และถ้าสารละลายที่มีความเข้มข้นในหน่วยโมลต่อกิโลกรัมเท่ากัน จะมีจุดเดือดและจุดหลอมเหลวเท่ากัน โดยที่ตัวละลายจะเป็นสารใดก็ได้แต่ต้องเป็นสารที่ระเหยยากและไม่แตกตัวเป็นไอออน ส่วนสารละลายที่มีความเข้มข้นต่างกัน แม้จะมีตัวทำละละายชนิดเดียวกันก็มีค่าจุดเดือดและจุดหลอมเหลวไม่เท่ากัน
สูตรเกี่ยวกับสารละลายที่มีสมบัติคอลลิเกตีฟ
1. จุดเดือด
= จุดเดือดของสารละลาย - จุดเดือดของตัวทำละลาย (องศาเซลเซียส)
K b = ค่าคงที่ของการเพิ่มขึ้นของจุดเดือดของสารละลาย ( องศาเซลเซียส /mol/kg)
m = ความเข้มข้นของสารละลาย ( mol/kg)
m 1 = มวลตัวถูกละลาย ( g)
m 2 = มวลของตัวทำละลาย ( g)
MW 1 = มวลโมเลกุลของตัวถูกละลาย
2. จุดหลอมเหลว ( หรือจุดเยือกแข็ง)
= จุดเยือกแข็งของตัวทำละลาย - จุดเยือกแข็งของสารละลาย (องศาเซลเซียส)
K f = ค่าคงที่ของการลดลงของจุดเยือกแข็งของสารละลาย ( องศาเซลเซียส /mol/kg)
3. สารละลายชนิดเดียวกันมีความเข้มข้นเท่ากัน จุดเดือดและจุดเยือกแข็งสัมพันธ์กันดังนี้

รวมสูตรการคำนวณสารละลาย
1. ร้อยละโดยมวลของตัวถูกละลาย
2. ร้อยละโดยปริมาตรของตัวถูกละลาย
3. ร้อยละโดยมวลต่อปริมาตรของตัวถูกละลาย
4. mol/dm 3
5. mol/kg

6. สารละลายที่มีความเข้มข้น C mol/dm 3 จำนวน V dm 3 จำนวนโมลของตัวถูกละลาย n mol
7. สารละลายที่มีความเข้มข้น C mol/dm 3 จำนวน V dm 3 จำนวนโมลของตัวถูกละลาย n mol

8. การเปลี่ยนหน่วยสารละลายจากหน่วย ร้อยละ -----------> mol/dm 3
8.1 ร้อยละโดยมวล ---------> mol/dm 3
C = ความเข้มข้น (mol/dm 3)
d = ความหนาแน่นของสารละลาย (g/cm 3)
X = ความเข้มข้น (% โดยมวล)
M = มวลโมเลกุลของตัวถูกละลาย
8.2 ร้อยละโดยปริมาตร --------------> mol/dm 3
D = ความหนาแน่นของตัวทำละลาย (g/cm 3)
x = ความเข้มข้นของสารละลาย (% โดยปริมาตร)
8.3 ร้อยละโดยมวลต่อปริมาตร ---------------> mol/dm 3
X = ความเข้มข้นของสารละลาย ( ร้อยละมวลต่อปริมาตร)

9. การเตรียมสารละลายเจือจางโดยการเติมน้ำ
โมลของตัวถูกละลายก่อนเติมน้ำ = โมลของตัวถูกละลายหลังเติมน้ำ
สารละลาย C 1 mol/dm 3 จำนวน V 1 cm 3 เติมน้ำเป็นสารละลาย C 2 mol/dm 3 จำนวน V >2 cm 3
10. การเตรียมสารละลายโดยการผสมสารละลายชนิดเดียวกันความเข้มข้นต่างกัน แต่ปริมาตรที่ใช้ต่างกัน
C 1V 1 และ C แทนความเข้มข้นของสารละลายมีหน่วยเป็น mol/dm 3
C 2V 2 และ V แทนปริมาตรของสารละลายมีหน่วยสอดคล้องกัน เช่น cm 3 หรือ dm 3 เหมือนกัน